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1 Introduction

Over the past few weeks an enormous amount of information has been presented
to those following the AES e�ort. At a conference it is often the headline claims
that are remembered. A more detailed view takes time to come out.

While we will clearly consider the security implications of what was said at
the third AES conference in New York, much of this note will concentrate on
the huge variety of performance-related information that was presented. We will
take some time to look at the data not just at face value, but also to see what
trends are emerging for the future. It's interesting to discover that this can give
a very di�erent picture.

Our signi�cant regret is the very limited amount of time that we have had
after the 3rd AES conference to prepare this document. The more we have looked
at recent controversial issues, the more we have found to question. Much is riding
on the success of the AES. After such a long time and such an enormous e�ort,
sound-bites and casual summaries seem to be a little out of place. Instead, the
cryptographic community owes itself the luxury of looking long and hard at the
details.

2 Implementation and performance issues

Many issues were raised recently about the suitability of RC6 in di�erent im-
plementation environments. We start by responding to some of the criticism
we received and then highlight many of the successes for RC6 that have been
forgotten, overlooked, or are quite simply taken for granted.

2.1 Key agility and IPsec

While \key agility" is one of the properties being considered during the AES
process, it is not so easy to assess its actual importance in current and prospec-
tive applications. Doing so requires a broad understanding of the system being
considered, an understanding of the statistics of the tra�c being encrypted, and
perhaps a little mathematical queuing theory as well.

Of course, it is easy to say that \shorter key setup times are better, all other
things being equal." But usually all other things aren't equal, and so one must
consider the tradeo�s more explicitly.



Key schedule security. >From a security viewpoint, a key setup that provides
more thorough mixing of the key bits can provide greater protection against
possible vulnerabilities due to key separation (as for Two�sh [35, 28]), and vul-
nerabilities due to overly simple dependencies between round keys (as for Rijn-
dael [19]). The cryptographic advantages of a strong key setup routine can be
very signi�cant. Given that security is a more important criterion for AES than
e�ciency, our above maxim should perhaps be reworded as \stronger key setup
routines are better, all other things being equal."

Furthermore, the protection purchased by strong key setup is \cheap," as it
is paid for only once per message to be encrypted, rather than once again for
every block of the message. For example, if one were to double the number of
rounds of encryption per block, this would incur a multiplicative penalty of a
factor of two for encrypting a message, whereas a strong key setup routine only
incurs an additive penalty paid at the beginning.

Key schedule performance. Turning now to the secondary criterion of e�-
ciency, we see that the obvious parameters that are relevant are the relative speed
of key setup versus encryption and the length of the message to be encrypted.
It may be the case that a stronger key setup enables an encryption algorithm
to run particularly quickly (as for RC6), so we need to determine how to assess
the combination of the somewhat longer key setup time with a somewhat faster
encryption rate.

Most often, there is not just a single message to be encrypted, but a stream
of packets (e.g. IP packets) to be encrypted. The distribution of packet lengths
then becomes the most relevant parameter. For Internet tra�c Cla�y [10] quotes
the following saying.

More than half the packets are mice, more than half the payload are
elephants.

So, it is well-known that while \most packets are mice" (i.e., most packets
are small), it is the case that \most of the payload are elephants" (i.e., most
of the data occurs in large packets). A fairly realistic and plausible model of
Internet tra�c would have 60% of the packets having length 40 bytes, 30% of
the tra�c having around 560 bytes, and 10% of the tra�c having length 1500
bytes. While sixty percent of the packets have length 40, the average packet size
has length 342 bytes.

Understanding such statistics is important, since the average time to encrypt
an Internet packet is the same as the time spent to encrypt a packet of aver-
age size, by the standard theorem of probability theory known as linearity of
expectation. This assumes that the time to encrypt the packet is the key setup
time plus the time needed to encrypt each block of data of the packet. Thus, for
Internet tra�c, it would be reasonable to compare encryption algorithms based
on the total time they require to encrypt a block of size 342 bytes.

The throughput of an algorithm is directly related to the speed at which an
algorithm can encrypt a packet of average size (e.g. 342 bytes).



While this is a good �rst-order rule of thumb, there are other thoughts or
considerations that may come to mind. For example, Steve Bellovin [7] stated
concerns that for VPNs (virtual private networks) using IPsec, an encryption
unit using an algorithm with longer key setup (but presumably shorter average
time to encrypt) might have di�culty when the input contained a sequence
of short packets that required di�erent keys. Perhaps the encryption unit would
\fall behind" in such circumstances as too many key setups had to be performed.

The key to resolving this concern is to realize that routers and VPN units are
normally built with surprisingly large bu�ers (or queues), in order not to interfere
with the TCP/IP window size algorithm used for controlling information 
ow.
The standard rule of thumb is that such a unit should have a bu�er capable of
holding 100 milliseconds of tra�c [3]. If you have a router or VPN box working at
T3 rates (45 Mbit/sec), this unit would normally have a bu�er capable of holding
around 560 Kbytes, or some 1600 average Internet packets. This bu�er smoothes
out the variability of packet arrival times and packet sizes. The encryption unit,
which encrypts faster on the average than the transmission rate, can \work
ahead" on the queue of packets waiting to go out. The queue size is so large that
the law of large numbers takes over, and all that really matters is the length of
time taken to encrypt a packet of average size.

As an aside we note that, of course, if the queue empties out, then this ar-
gument doesn't apply. But in that case the channel is not being fully utilized
anyway, so throughput doesn't matter, and the extra latency of key setup for an
incoming short packet|on the order of microseconds at most|is negligible com-
pared to the transmission time (light travels less than a mile in a microsecond,
and takes a couple of milliseconds to get from Boston to San Francisco).

So the above argument shows that for VPN's or other encryption units han-
dling IP tra�c, the most relevant parameter is the speed at which a packet of
average size can be encrypted.

There are other techniques that would typically be employed in such circum-
stances as well. For example, by using extra memory, one can cache previously
computed tables of round keys, and avoid key setup altogether when a new
packet has the same key as a previous packet. Bellovin [8] has analyzed some
typical VPN tra�c, and found that a cache of 100 round key setups enables
over 99.9% of the key setups to be skipped altogether! Note that for RC6, which
has a round key table of 176 bytes, 100 keys occupy only 17.6 Kbytes, which is
a trivial amount of memory compared to the normal packet bu�ers mentioned
above. A \hit rate" of 99.9% means a \miss rate" of 0.1%, so that key setup
only needs to be performed 0.1% of the time. In this case, one should divide
the normal key setup time by a factor of 1000 to obtain the \e�ective key setup
time." (Interestingly, such a standard \round key caching" technique yields the
most bene�ts for algorithms, such as RC6, that have relatively long key setup
times, and yield little or no bene�t for algorithms that have don't put any e�ort
into key setup.) In any case, key setup time becomes e�ectively irrelevant once
caching of round keys is used.

One may wonder about other classes of data tra�c, such as ATM tra�c, that



has only short packets. The most important point here is that ATM networks
are at the transport layer of the network protocol stack, whereas encryption is
normally done at the network layer. ATM networks may be used to handle en-
crypted tra�c, but the encryption is not done at the ATM packet (transport)
level, but at the higher IP (network) level. Thus, our previous arguments still ap-
ply. (In any case, it seems likely that ATM networks are being eliminated in favor
of networks that run IP packets directly over the lower link-level connections.)

In summary, it seems that using a strong key setup routine incurs little
performance penalty per se for the most common applications (e.g. IP tra�c),
as long as the time to encrypt a packet of average size (including key setup) is
good.

Finally we might also note that encrypting according to the IPsec protocol
will typically increase the length of the packet being encrypted by 32{44 bytes
(the former with no authentication, the latter with authentication), in order to
accommodate the new IPsec headers, IVs, padding, authentication �eld, etc. The
time taken to transmit these additional �elds provides additional \slack time"
for performing key setup. The e�ective data rate (as seen by the encryption
unit) is noticeably less than the actual data rate (as seen on the encrypted
channel). While interesting, this may be less signi�cant than some of our other
observations.

Conclusion. There are many good security reasons to use a key schedule that
o�ers signi�cant mixing of the user-supplied key data prior to encryption. This
might involve some additional cost. But while it was claimed that this would
have a signi�cant impact on applications such as IPsec, a close analysis suggests
that a longer key setup in fact has very few, if any, practical implications.

Indeed, it seems that the extra security o�ered by a more thorough key
schedule makes it far more appealing as an AES algorithm than a light key
schedule for which there may well be vulnerabilities.

2.2 Block ciphers, modes, and future processors

As well as the choice of block cipher, the way it is used will have a great e�ect
on the rate of encryption.

High performance applications, such as high speed network encryption,
will require the increase in output, and as a result, often focus on a non-
feedback mode of operations such as counter mode to obtain performance.
{ Weeks, Bean, Rozylowicz, Ficke [49]

However we believe that for many applications which require high encryp-
tion rates, non-feedback modes [: : :] will be the modes of choice. Note that
the Counter mode grew out of the need for high speed encryption of ATM
networks which required parallelization of the encryption algorithm.
{ Elburt, Yip, Chetwynd, Paar [18]



[: : :] using current standards does not permit to fully utilize the perfor-
mance advantage of the hardware implementations of secret key cryp-
tosystems, based on parallel processing of multiple blocks of data.
{ Gaj, Chodowiec [20].

Certainly most commentators conclude that for high performance appli-
cations non-feedback modes will be preferred. As such, when estimating the
throughput of a cipher one should also consider the mode that the cipher will be
used in. Is this likely to make a di�erence? It can make an enormous di�erence.

On advanced CPUs the relative performance of candidates may di�er
widely between feedback and non-feedback (or interleaved) modes.
{ Clapp [11]

Following the standardization of DES there followed a FIPS document on
the modes of DES. NIST has already announced its intention to do the same
with the AES. Thus, in looking at the AES candidates it is not su�cient to
look at their performance in isolation from a potential mode of use. Even more
importantly, we should not restrict ourselves to looking solely at the four modes
standardized for use with DES. New applications require new modes and there
are very pressing reasons to consider the suitability of a cipher to modes like
counter mode [33] and interleaved modes. These are the modes that are going
to be used for the fastest applications, where performance matters.

Thus, merely comparing the algorithms on the performance of a single-block
encryption does not give the full picture. And since many modern processors
will permit the simultaneous encryption of multiple blocks we'll see that it is in
these cases that RC6 truly comes into its own.

2.3 Performance on the IA-64

In [51] a careful assessment was made of the performance of the di�erent AES
�nalists on the IA-64 and PA-RISC processor. Due to limited time we will only
consider the IA-64 here.

The times for encrypting a single block on the IA-64 for Mars, RC6, Rijndael,
Serpent, and Two�sh respectively have been given as 511, 490, 125, 565, and 182
cycles [51]. We have a slight improvement on this for RC6 and our current best
assembly implementation of a single-block encryption with RC6 is 470 cycles [53].

The surprisingly slow encryption performance of RC6 is due to the very poor
support provided in the IA-64 for a 32-bit integer multiplication. Either this is
performed via a series of 16-bit multiplications within the parallel instruction
set, or it is performed within a separate computational unit for which there
are delays in delivering and retrieving information. This presents a very strange
evolutionary step, given the excellent support for this operation within the IA-32
architectures. Perhaps it is better viewed as a design anomaly rather than being
truly indicative of future trends. For this reason, even the crude estimates for
the (as yet hypothetical) IA-64++ given in [51] are more than illustrative. They



in fact represent the possibilities for RC6 if chosen as the AES. Certainly there
is nothing at all intrinsic to the design of RC6 that makes it inherently slow on
future architectures.

Yet even on the IA-64 we have not heard the full story.

Encrypting multiple blocks and non-feedback modes. Let us consider
the case of processing multiple blocks simultaneously on the IA-64. Even though
there is a delay in getting data to and from the multiplication operation in the
IA-64, the multiplication itself takes one cycle. Thus, when multiple encryptions
are processed they can be scheduled so that the arrival and departure of data to
the multiplication operation is staggered but the multiplication operation is kept
continually busy. To do this, all that is needed is a register-rich environment, as
is provided by the IA-64. The results of our implementations on the IA-64 when
processing 1, 2, 4, and 8 blocks simultaneously are given in Table 1.

number of blocks processed simultaneously 1 2 4 8

cycles 470 1001 766 1178
cycles/block 470 418 309 199

Table 1. Cycle counts for encrypting multiple blocks with RC6 on the IA-64. These
are actual performance �gures from veri�ed implementations [53]. Except for the case
of a single block which is hand-optimized assembly, the other �gures used optimizing
tools.

The �gures for more than a single block were obtained via optimizing tools.
They might be improved by hand-optimization or via any improvements in the
performance of the tools available. In addition substantial e�ort was made to
keep the size of the code reasonable. The performance �gures presented in [51]
were \optimized for performance, not code size or table size".

When using an algorithm for bulk encryption, when speed matters, it is
accepted that a non-feedback mode would be preferred. When we compare the
performance of the di�erent AES �nalists in a non-feedback mode, where the
simultaneous processing of multiple-blocks is available, then we see that even
on the IA-64, the performance of RC6 can compete with that of Two�sh and
when fully optimized might compete with that of Rijndael. Don't forget that this
is on the IA-64 on which RC6 is particularly penalized. On some other 64-bit
platforms it out-performs other �nalists by far.

Non-feedback modes and other �nalists. How do the other �nalists com-
pare when taking advantage of non-feedback modes? There is a general answer
that applies to modern processors and a second additional issue that is speci�c
to the IA-64.



Consider the issue speci�c to the IA-64 �rst. Using non-feedback mode al-
lows for a straightforward design for 32-bit multiplication on the IA-64, since
the latencies for non-feedback blocks can be overlapped. Other algoithms that
pay performance penalties other than for latency will bene�t far less from such
optimizations. We are also able to make some other gains on top of that (which
would potentially apply to the hypothetical IA-64++ or its equivalent) and this
a result of a more general phenomenon that applies to many modern processors.

Whenever the issue of non-feedback modes is considered, we see that Ri-
jndael typically gains the least, if anything at all. Two�sh sometimes gains a
little. In general terms this is because Rijndael and Two�sh tend to o�er more
opportunities for parallelism during the encryption of a single block. Thus most
quoted performance �gures will already exploit what parallelism is available in
modern processors. By contrast, the data-
ow in RC6 is so simple that there
are few opportunities for parallelism in a single block. At a sound-bite level, its
performance appears to su�er. But once we move beyond that and realize that
for performance-critical uses we would use a non-feedback mode, then the oppor-
tunities for parallelism with RC6 are no longer overlooked but instead become
a winning factor.

Simultaneous encryption with di�erent keys. The �gures given in Table 1
used the same encryption key for each of the simultaneous streams. But many of
the same observations can be used when we consider encrypting di�erent blocks
with di�erent encryption keys. However we would need to be careful to ensure
that all the subkeys are available as needed. Rough estimates suggest that we
could encrypt with two di�erent encryption keys but we would interleave the
processing of each encryption strand twice. This would give roughly the same
performance as that of encrypting four blocks simultaneously.

Even though our focus is on the high-performance non-feedback modes, our
comments apply to any mode that allows the processing of multiple blocks.
When di�erent keys are accommodated it is possible to add interleaved modes
of encryption and applications such as encrypting/decrypting data and simulta-
neously computing/verifying a MAC.

CBC + MAC. Consider the example of encrypting/decrypting a stream of
data and simultaneously computing/verifying a MAC. The MAC might be com-
puted using cipher block chaining and the encryption and MAC keys would be
di�erent. A �rst-cut prototype in \C" gave us an encryption-only routine that
(on an IA-64 clocked at 500 Mhz) encrypted at 8.43 MBytes/sec and provided
an encryption + MAC scheme at 7.48 MBytes/sec. The absolute speed is not
that important. Rather we see that computing the MAC cost only around 10%
in terms of throughput instead of the 100% penalty that might be anticipated4.

4 Such an overhead would refer to the typical technique of computing the encryption
and the MAC separately. New research suggests new modes of use can achieve the
same goal but use very di�erent techniques [26].



2.4 Other processors

We have not had time to look at other platforms in any way near the same kind
of depth as we did for the IA-64. Instead we can relate the experience of other
implementers.

Alpha 21264. In [50] the AES �nalists are compared on the Alpha 21264. Esti-
mates are given for the time required to encrypt two blocks simultaneously and
they show excellent performance for RC6. Being able to process more strands,
as we could on the IA-64, would give even more opportunities for speed-up.

RC6 has the most potential for parallelism when multiple streams are
processed on the same processor simultaneously in a single thread.
{ Weiss and Binkert [50].

Note that if di�erent keys were used then RC6 would really come into its
own. If an algorithm o�ers no signi�cant advantages when processing multiple
blocks, then in a in a typical encryption + MAC application its performance
would halve since a block would have to be processed twice; once for encryption
and once for computing the MAC. Yet for RC6 the cycle count would remain
around at 210 cycles per block perhaps with a small (� 10%) overhead.

TriMedia. Clapp [11] reports on the possible implications of using non-feedback
modes with the TriMedia CPU. The conclusions for this processor follow the
same trends as we see for other advanced CPUs. When high-speed encryption
is an important factor, non-feedback modes would typically be used. And when
non-feedback modes are used, RC6 is typically the best performer|often by
some considerable margin.

RC6 shows the greatest bene�t from interleaved modes, considerably out-
performing the other candidates.
{ Clapp [11].

2.5 FPGA and hardware

At the 3rd AES conference, the last signi�cant area of performance was con-
sidered. This was the issue of hardware performance, both in recon�gurable
hardware (FPGAs) and also in custom and semi-custom ASIC designs. The
biggest di�culty here is in the somewhat incomplete nature of the information
available. Typically the cryptographic community, including ourselves, is more
familiar with software implementation. As a consequence it can be hard to really
highlight the signi�cant issues from the papers that were presented.



FPGAs. Two papers on FPGA implementations [18, 20] seem to o�er contra-
dictary evidence while a third [48] provided detailed and informative observa-
tions though they weren't the results of actual implementations.

Since Serpent is bit-wise oriented, one would typically expect it to do well
in FPGA and hardware implementations. This generally seems to be the case.
There is however some confusion; in [20] we see that the measure of speed/area
puts Serpent fourth among the �nalists whereas in [18] it is �rst. Similar con-
fusions reign for Two�sh. In [18] Two�sh appears to have the best speed/area
measure whereas in [20] Two�sh is the worst among the �nalists. Clearly there
are some discrepancies!

Even though RC6 does not outperform the other �nalists on FPGAs as it
might in software, it still performs very well. This seems to be somewhat con-
trary to public perception after the recent AES conference. And while it o�ers
very good performance, it does so with exceptionally compact implementation.
According to [20] Mars, Rijndael and Serpent all su�er in this regard.

For the low-cost, medium-size family of Xilinx FPGA devices, XC4000,
only two ciphers, Two�sh and RC6, were able to �t within the largest
device from this family.
{ Gaj and Chodowiec [20].

Note further that if both encryption and decryption are to be supported
then Rijndael and Serpent once again su�er badly. The design of RC6 means
that many of the encryption and decryption resources can be shared.

Even though Weaver and Wawrzynek [48] have concerns about the key sched-
ule used in RC6|concerns that we have addressed in Section 2.1|they comment
on the remarkable versatility of RC6.

The ability to reasonably reduce the hardware requirements without sacri-
�cing too much performance is present, a useful feature when a low-cost
implementation is desired.
{ Weaver and Wawrzynek [48].

With regards to raw performance it is interesting to note that Elbirt et al. [18]
place Two�sh last (though they didn't implement Mars) both in a feedback and
non-feedback mode. Serpent is placed �rst in both modes (as would be expected).
For Rijndael and RC6 however the situation is interesting. For the feedback mode
Rijndael outperforms RC6. But for implementations where speed really matters,
when non-feedback modes would be used, RC6 outperforms Rijndael. Note the
factor increase in performance speed between feedback and non-feedback modes
as described by [18] and presented in Table 2.

Again, the trend is clear. RC6 gains signi�cantly when compared to other
�nalists when we consider high-speed applications and the use of non-feedback
modes. Rijndael typically o�ers the least gain.



Mars RC6 Rijndael Serpent Two�sh

feedback mode (Mbit/sec.) n/a 126.5 300.1 444.2 119.6
non-feedback mode (Gbit/sec.) n/a 2.40 1.94 4.86 1.59

factor increase n/a 19 6 11 13

Table 2. The factor increase in the encryption speed of the di�erent algorithms
in an FPGA implementation [18] when moving from feedback to high-performance
non-feedback mode.

ASICs. With regards to custom and semi-custom ASIC designs, the informa-
tion available once again gives a broad picture but few details. The di�erent
papers [25, 49, 42] appear to use di�erent techniques and to have di�erent aims.

Serpent and Rijndael tend to outperform the other �nalists [25, 49]. In [43]
Schneier describes Two�sh as being good in hardware and RC6 poor, yet in
terms of encryption speed there does not appear to be much between them and
in [49] the pipelined mode of RC6 appears to outperform Two�sh with what
appears to be roughly comparable area. In other situations the positions are
reversed.

Certainly RC6 and Mars seem to be somewhat hit by the use of the multipli-
cation. (We should note that RC6 actually requires only a squaring operation.)
Yet, in [25] the possibility of highly optimized multiplication circuits is men-
tioned and an estimate made for the performance of RC6 and Mars under such
conditions (they would then both out-perform Two�sh). However it is not quite
clear what the �nancial cost would be of doing this. We are yet to be convinced
that it would be prohibitively expensive to make such optimizations and we sus-
pect that as a fraction of the total design and layout costs for a custom ASIC
design, optimizations of any of the AES �nalists would be relatively minor.

To summarize. The results available for hardware implementation are new and
evolving. Existing papers on FPGA implementations seem at times to contradict
each other. As more information becomes available we can expect the picture to
stabilize somewhat. Even so, RC6 performs well in these summaries. Never the
top performer, it is always a good performer. It o�ers remarkable 
exibility in
implementation [18, 48], it has excellent area requirements, and it provides good
performance with excellent gains when we move to high-speed, non-feedback
modes [18].

The information we have on ASIC designs is very new and also somewhat
incomplete. There is very little detail available and in such a short time it is
hard to really understand the true signi�cance of recently announced data.

Our views on hardware implementations though remain unchanged. We be-
lieve that performance in software is a far more important criteria for the AES
algorithm. We further believe that once the decision to make a dedicated hard-
ware design has been undertaken, then the cost of signi�cantly optimizing any



of the AES �nalists will be a small fraction of the overall cost.

2.6 Smart card performance and the ARM processor

Strange claims appeared in Schneier's Cryptogram [43] newsletter for April 15,
2000. Among them was the often repeated refrain that RC6 doesn't �t on a cheap
smart card. As has been made clear many times over, this is not true. RC6 �ts
in smart cards with as little as 128 bytes of RAM. This was demonstrated over
a year ago at the 2nd AES conference in Rome [27].

Second was the strange claim that RC6 was too slow on ARM chips. Indeed
the performance on ARM chips is very important and likely to become increas-
ingly so. Yet, two independent studies [23, 34] have already shown that RC6 in
fact o�ers the fastest encryption speed of any of the AES �nalists on the ARM
chip!

Hacez et al. [23] shows that in raw encryption speed RC6 is twice as fast
as Rijndael, and more than ten times faster than Two�sh! Messerges [34] shows
that RC6 is once again the fastest and that Two�sh is even slower than Mars
and Serpent, being nearly three times slower than RC6. In fact, Hacez et al. [23]
comment on the suitability of RC6 to the ARM processor.

RC6 was beyond a doubt the easiest candidate to implement on a 32 bits
(sic) machine, as is illustrated by its incredibly short code [: : :]. On a
speed point of view, RC6 is impressive too.
{ Hacez, Koeune, and Quisquater, [23]

General smart card performance. It is accepted that smart cards won't be
used for bulk encryption. At most a few blocks of data will be processed. On
low-end smart cards, the performance of RC6 is adequate. Nothing more. But
as we move to higher-end cards, including those that o�er ARM chips and other
advanced processors, the advantages of RC6 outweigh those of all other �nalists.
This is where smart cards will be heading over the life-time of the AES. This is
where the advantages of RC6 will tell.

2.7 Other important environments

In among the whirlwind of new results, important information was often over-
looked or forgotten. We provide a reminder here.

Java. The simplicity of a cipher is most acutely re
ected in the Java performance
of a cipher. This is in terms of code-size, performance, and potentially most
critically, the amount of dynamic RAM used during the encryption process. With
the increased importance of the Internet and its extension to mobile devices, the
performance of the �nalist in Java could well be vital. While there may well be
many small processors in the coming years [46] many of them will in fact be
Java-based, for instance in set-top boxes.



[: : :] while Java will hardly be the language of choice for high load servers
it may well be the choice for medium load servers and especially clients.
Add to that handheld and other small devices and performance in Java
becomes an issue.
{ Sterbenz and Lipp [47].

In every study [16, 17, 47] RC6 o�ers excellent performance in Java. Not just
in raw encryption speed but perhaps more importantly in the amount of memory
that is required. Considering Table 1 in [47] we see that RC6 has the smallest
code size by a factor of three over the next closest �nalists, and also uses the
least amount of dynamic RAM.

The size of Java code and the amount of memory available in small portable
devices could be an important issue for Java implementations. So comparing
algorithms by looking at the raw encryption speed doesn't always give the full
picture. One very crude attempt to take into account the penalty associated with
using the di�erent �nalists is to add the memory requirements (both class �le
size and memory useage) in bytes m for the di�erent algorithms|note however
that this may well be implementation dependent so the measure we are about
to derive should be viewed as guidance only. We then divide this quantity into
the encryption speed e (where this is measured in bits/sec. for a 128-bit key).
By doing this we get an indication of the performance that can be o�ered by
a �nalist when also taking into account some of the associated penalties. The
�gures we obtain are given here and the raw data was taken from [47]. Note
that a higher value to e=m means that the cipher is more suited to the Java
environment.

Mars RC6 Rijndael Serpent Two�sh

e=m 1; 469 11; 093 753 878 1; 173

Table 3. Encryption speeds for 128-bit keys divided by the memory requirements for
a Java implementation of the di�erent �nalists [47]. The larger the value, the greater
the indication that the algorithm may be more suitable for Java.

We are the �rst to say that this is not such a reliable measure and too much
shouldn't be read into it. Nevertheless it is interesting since it illustrates the
same general trends that we see in other implementation areas. The low score of
several �nalists shows that they obtain their fast performance at the expense of
increased memory. This could be a considerable penalty in certain applications.

The suitability of RC6 for Java is readily apparent. So is its simplicity.

Although the least time was spent on optimizing RC6 it still comes out
as the fastest algorithm on almost all platforms.
{ Sterbenz and Lipp [47].



DSPs. One anticipated future trend is the growth of the market for DSPs
and/or microprocessors with DSP capability. A recent Business Week article [37]
quotes the claim that \By 2010, every microprocessor will have DSP." Schneier
and Whiting [46] make similar suggestions.

AES will have to work on DSPs. Sooner or later, your cell phone will
have proper encryption built in. So will your digital camera and your
digital video recorder.
{ Schneier and Whiting [46].

RC6 not only performs very well on processors of this type [52], but gains its
impressive performance without the use of look-up tables which place additional
burdens on memory.

Embedded system applications have often memory constraints.
{ Wollinger, Wang, Guajardo and Paar [52].

As in the case of Java, we can calculate an index of suitability for the di�erent
�nalists on the TMS320C6201 DSP. The raw data for this calculation comes
from [52]. In fact, performance data is given there for both single-block and
multi-block modes, something we have already considered with regards to the
IA-64 and other advanced processors. To estimate one of the penalties in using
an algorithm we might sum up the memory requirements m and divide this into
the encryption speed e measured in Kbits/sec for the 128-bit key case. (It seems
that the �gure for Serpent in multi-block mode could be improved.) Again we
must stress that this is not such a reliable measure and it is merely indicative of
some general algorithm attributes. However it does give some indication of the
relative suitability of the di�erent �nalists to the DSP environment, while also
taking account of some of the associated penalties.

Mars RC6 Rijndael Serpent Two�sh

e=m single-block mode 11 152 6 8 96

e=m multi-block mode 14 211 6 6 88

Table 4. Encryption speed for 128-bit keys divided by the memory requirements for
a DSP implementation of the di�erent AES �nalists [52]. The larger the value, the
greater the indication that the algorithm may be more suitable for DSPs.

Once again (see Table 4) RC6 compares very well to the other �nalists. Note
further the exceptional advantages that RC6 o�ers in multi-block applications
and therefore in very high-speed, streaming applications. Once again, we see
that the headline performance of some �nalists is obtained at a cost.



32-bit. As is well known, RC6 o�ers the best performance on the NIST reference
platform and on the full range of modern 32-bit Intel processors. Encryption
times on the Pentium II are now 223 cycles per block [2].

Most of today's high-end computing base is deployed in PC's either in the
workplace or at home, and these are 32-bit machines. When we couple the needs
of greater processing power with the inevitable drop in prices of 32-bit processors,
it is very clear that the mobile computing device market, including smart card
applications, will inevitably shift to a 32-bit oriented processor base. This trend
may take a few years to come to fruition, but its results are likely to be with us
for the 20 or 30 years that might be required for the AES.

2.8 Simplicity is important

Hand-optimized assembly code will o�er the best algorithm performance on any
processor. Yet often developers will use portable code in a higher-level language
and compile it for the environment of use. Under such circumstances the sim-
plicity of a cipher is very important since it allows a compiler to produce well-
optimized code. This means that good performance can be achieved without
time-consuming and costly hand optimizations. Readers should be especially
wary of techniques such as self-modifying code [46] or other unorthodox coding
techniques that have been used to give good performance �gures. This can lead
to portability problems.

The Two�sh algorithm compiles on the SGI using the MIPSpro compiler,
but results in a Bus Error and a core dump when the blockEncrypt()

and blockDecrypt() functions are invoked. This appears to be a problem
with how the compiler is handling byte alignment in the optimized code.
{ Bassham [5].

[: : :] self-modifying code and key-speci�c static areas is generally consid-
ered to be a bad programming practice.
{ Aoki and Lipmaa [2].

2.9 Implementation conclusions

By any criteria, RC6 is the most suited of all the AES �nalists to modern 32-bit
processors, DSPs, ARM processors, and the Java environment. Together, these
platforms cover the majority of today's important and growing application areas.
These are likely to be the most important platforms for the lifetime of the AES.

On modern processors, including 64-bit designs, the performance of RC6 can
be exceptional. Even on the IA-64 with its surprising design features, in high-
performance non-feedback modes RC6 performs as well as any other �nalist.
On other modern processors, these high-performance non-feedback modes allow
RC6 to outperform all other �nalists by a signi�cant margin.

Much was made at the 3rd AES conference in New York of the key agility
of RC6. Yet we have shown in Section 2.1 that claims of the importance of key



agility, for instance to IPsec, have been greatly exaggerated. Instead we believe
that the key schedule of RC6 is in fact a very attractive feature of the cipher.
Not only is it immensely secure, surely the greatest priority for the AES, but we
will see in Section 3.2 that its 
exibility is particularly useful when it comes to
hashing.

In fact much of the performance of RC6 is down to its 
exibility and the ex-
ceptionally light demands the algorithm makes. Looking at the papers on FPGA
implementation that were presented at the recent AES conference, it is enlight-
ening to see that RC6 actually performs very well. Somehow at the conference we
were left with the impression that this might be otherwise. The only area where
RC6 appears not to perform as well as some of the other AES �nalists is in the
area of semi-custom and custom designed ASIC. At this early stage we would
like to see more detailed information before jumping to conclusions. However
we believe that it is in software where the performance of an algorithm matters
most. In hardware design, more e�ort can be made on optimizing whichever of
the AES �nalists are chosen. Yet even at this early stage, with the �rst incom-
plete sets of information available, the performance of RC6 is good when the
multiple Gigabit rate is readily achieved [49].

3 Versatility

One of the early stated aims of the AES process was that the �nal cipher be
\simple and versatile". RC6 is clearly the �nalist that most fully supports this
goal.

3.1 Parameter choices

RC6 is fully parameterized; the number of encryption rounds, the size of the
encryption key (not just the three must-support values of 128, 192, and 256
bits), and the block size can all be easily and readily changed. This kind of

exibility is an integral design feature. For most of the other �nalists it is not
at all clear how a change to the block size, or how the use of an extremely long
encryption key, would be accommodated.

These could be important considerations. For some applications, a developer
may wish to call on a 64-bit block cipher perhaps as a drop-in replacement to
DES. With RC6 as the AES, such a variant is readily described. Not so with
any of the other AES �nalists. At the other extreme, it is possible that in the
near future a 256-bit hash value will be preferred. RC6 is 
exible enough in the
algorithm speci�cations to give 256-bit hash values directly. Some other �nalists,
particularly Mars and Two�sh, are so complicated that it is unclear how di�erent
block sizes would be de�ned. Instead more complicated constructions would be
required to derive 256-bit hash values.

Another important property of having a fully-parameterized algorithm is
that small-scale versions of the algorithm can be devised that retain some of the
properties of the larger-scale cipher. This facilitates analysis and experimentation
and helps to provide a quick and accurate security analysis of the cipher.



3.2 RC6 is well-suited to hashing

Considering the role of a block cipher for hashing focuses attention on the key
schedule of a cipher. We will demonstrate that the key schedule of RC6 has some
nice properties that make it suitable for hashing. One way to use a block cipher
as a hash function is typically referred to as Davies-Meyer hashing [33]. In the
following sections we will use this as an example that illustrates some of the
potential 
exibility of RC6 and its key schedule.

Davies-Meyer hashing. Suppose that we have a b-bit block cipher that uses a
k-bit key. If we wish to hash a messagem we divide the message into k-bit blocks,
padding as necessary to complete an integral number of blocks m0, : : :, ma�1. A
constant b-bit initial value IV is speci�ed. The hash output is then given by Ha

where H0 = IV and for 0 � i � a� 1 we have that Hi+1 = Encmi
(Hi)�Hi. At

each iteration of the hash function k bits of the m bits of message are processed.
The output is b bits in length. Denote the time to perform key setup with a
k-bit key as T k

setup and the time to encrypt a single b-bit block as T b
encrypt. The

time required to hash a message of m bits is dm
k
e� (T k

setup+T b
encrypt). Provided

T k
setup remains the same as we increase the key length k, we will improve hashing

performance.

Increasing the key-length. We will �rst consider the Davies-Meyer construc-
tion with the key-size k set to either 128 and 256 bits while the block-size b is
set to 128 bits. As a starting point the time to encrypt using Mars, RC6 and
Rijndael on the Pentium Pro is given as 306, 223, and 237 cycles respectively [2]
for 128-bit keys. For Serpent we refer to [45] where 900 cycles is claimed.

A rough and conservative estimate (particularly for RC6) of the factor in-
crease in the time required for key setup when compared to the encryption of
one block might be 10, 6, 1, and 2 for Mars5, RC66, Rijndael, and Serpent re-
spectively. This factor was estimated by considering several sources [22, 4, 45].
For the Mars �gure we slightly decrease the derived factor to take into account
the improved performance of the new keying option.

For Rijndael we observe that key setup and encryption times for 256-bit keys
will be approximately 1.4 times the time obtained for 128-bit keys since extra
rounds are needed. Finally for Two�sh we need to refer to the designers own
work [44]. The designers suggest the need to use the so-called zero-keying option
for hashing applications and give the cycle counts of 1250 + 860 for keying and
encrypting one block on the Pentium Pro with 128-bit keys and 2000+1420 for
256-bit keys.

Since the speci�cations for Mars and RC6 allow for keys longer than 256 bits
we will then explore the full potential of the AES candidates for hashing. We

5 This estimate agrees with documentation provided by the Mars designers [9].
6 An assembly implementation of the RC6 key schedule requires 1100 cycles [14] giving
a factor of 4:5.



will refer to this as extended Davies-Meyer techniques. The results we obtain
are presented in Table 5. For Mars we take keys up to 448 bits and for RC6
we take keys up to 1024 bits. It would also be interesting to consider how the
algorithms compare on platforms other than the NIST reference platform where
RC6 already has a performance advantage.

Mars RC6 Rijndael Serpent Two�sh

Davies-Meyer

Key length k = 128, Pentium Pro
hashing rate (cycles/byte) 210 98 30 169 132

Key length k = 256, Pentium Pro
hashing rate (cycles/byte) 105 49 21 85 107

Extended Davies-Meyer techniques

Pentium Pro
hashing rate (cycles/byte) 60 13 21 85 107

Table 5. Estimated cycle counts for three di�erent hash function constructions using
the AES �nalists where k denotes the key size in bits. The �gures for this table were
taken from the best known assembly �gures for the NIST reference platform and other
documentation where possible. The lower line gives the estimated cycle counts on the
Pentium Pro when taking advantage of the added 
exibility of the Mars and RC6 key
schedules.

Discussion. Schneier et al [45] give a comparison of hashing performance. Their
results are broadly in-line with the �rst row of entries in Table 5. However they
stopped short of extending these results to a Davies-Meyer construction with a
key size of 256 bits. It seems that hashing rates comparable to those obtained
by today's dedicated hash functions could be possible with RC6.

Finally we note that the RC6 key schedule can take keys up to 2048 bits
in length. No matter how tempting it might be to get truly exceptional perfor-
mance, such very long keys would not be recommended in this role since the
�nal few bytes of the text that would be input as key material might not receive
su�cient mixing. However keys up to 1024 bits in length would be a perfectly
reasonable choice. In addition, the design of the key schedule is such that even
when taking a key of length 1024 bits, there is no increase in the time for key
setup or encryption over that observed for 128- and 256-bit keys.

Conclusion. In this section we have considered the versatility of RC6. We see
that the full parameterization of the cipher is an important and very useful
attribute. It provides implementation 
exibility and also has a very signi�cant



e�ect on how easy it is to analyze a cipher. Furthermore, we have considered the
suitability of the AES �nalists to the role of hashing.

It is important in choosing the �nal AES algorithm that we ful�ll one of the
stated aims of the NIST AES process, and that is to choose an algorithm that
is \simple and versatile".

4 Security

Despite the good performance of RC6, and its exceptional versatility, we believe
that it is in terms of security that RC6 is the best suited �nalist to become the
AES.

Security is a di�cult attribute to quantify. There are the headline �gures in
di�erent \attacks" but how is their impact to be assessed?

The simplicity of a cipher is an essential and inseparable part of the security
of a cipher. Only by making a cipher simple can cryptanalysts be challenged
into looking at it. A simple cipher is one that is easily described and readily
remembered. It will, as a direct result, be analyzed and scrutinized widely [6,
12, 13, 21, 32]. Not only will it receive the greatest quantity of analysis but it will
also receive the most accurate analysis. When comparing the security of ciphers
we must recall that the true security of a cipher depends on

{ the amount of cryptanalytic scrutiny received,
{ the accuracy of existing cryptanalysis,
{ the ease with which verifying experiments can be conducted on a cipher,
{ the amount of earlier cryptanalytic work that can be used in the assessment
of the cipher,

{ and, the accuracy of the designers initial estimates.

On all counts RC6 is by far the most suited �nalist. A cipher we cannot
understand or accurately analyze is not necessarily secure.

4.1 The state of RC6

During the design of RC6 we performed what we believe to be the most accu-
rate assessments of the security of any of the AES �nalists [12]. RC6 is not so
complicated that approximating models have to be introduced to obtain results
(as with MARS [9] and Two�sh [44]). Instead we were able to get a surprisingly
accurate assessment of the strength o�ered by RC6 using direct analysis7. In
this way we were able to make a careful decision on the number of rounds for
RC6 so that we delivered good performance once our security goals had been
attained.

In the case of Mars and Rijndael new attacks [41, 19] have improved on
the work of the designers. Yet it is a vindication of our approach that when

7 Indeed, analysis is facilitated since it is easy to de�ne simpli�ed and small block-size
variants of RC6 which allow for more extensive analysis and experimentation.



other techniques are applied, as was done by Knudsen and Meier [32] (and also
Baudron et al. [6, 21]), they give surprisingly similar results to those provided by
our own analysis. This isn't a \small margin for security". Rather it is a carefully
assessed, and remarkably accurate, margin for security.

As well as being earned, some faith in a cipher can be inherited. The time
for assessment of the �nalists throughout the AES process has been a little less
than two years. By building on the knowledge of earlier ciphers we gain insight
into the security of a new cipher. It is clear that RC6 was designed in the light
of experience8 gained with RC5 [39]. And not only with regards to the structure
of the round function. We decided to choose a key schedule for RC6 that was
identical to that for RC5. No other AES �nalist uses a key schedule that has been
open to public analysis for nearly six years. Given the problems some �nalists
have in the key schedule, either with key separation in the case of Two�sh [35]
or with related-key attacks in the case of Rijndael [19], this is a very important
attribute.

Kelsey et al. [31] discuss cryptanalytic progress and emphasize the need to
be cautious when choosing the AES. We re-a�rm this view and stress that a
well-studied cipher, one that is very closely related to a previous cipher that has
already received more than �ve years of analysis, and one that has received the
most accurate security analysis, seems to be best-suited to this goal.

It is impossible to predict what new attacks will appear in the coming years.
Choosing a cipher for which there has been accurate and tested analysis seems
to be the best way to ensure that we satisfy even the most demanding security
requirements for the lifetime of the AES and beyond.

5 Conclusions: The case for RC6

The three most important attributes of the �nal AES are security, performance,
and versatility. With RC6 we achieve all three goals.

{ Existing analysis on RC6 is not only by far the most extensive of any of the
�nalists, it is also the most accurate and the most detailed.

{ RC6 o�ers exceptional performance where performance matters, and gives
the best all-round suitability for many modern applications.

{ RC6 is so simple that the full details of the cipher can be recalled at will.
Through this simplicity we have developed a truly versatile cipher.

For these reasons we believe that RC6 is ideally suited to be the �nal AES.
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